As I write this, we are in Suriname, moored near the tiny town of Domburg. A couple of nights ago, an American catamaran sailed in after a passage from Brazil. When they tried to anchor, their windlass jammed with the anchor partially deployed. They had just enough rode out to snag on the bottom, but not enough to hold the boat in place. As they tried to fix the problem, they ended up hitting another boat, then getting thoroughly entangled with it. After a bit of spirited language and a few hours of work, they were finally able to get clear of the other boat and anchor. There were a few rookie mistakes involved, but I shan't pass any judgments – Lordy, we've certainly made our share of mistakes along the way.
It did, however, remind me of the love-hate relationship we have with our windlass, that big, fat hunk of metal that raises and lowers the anchor. With the size of our anchor and the amount of chain we use, it is a very important piece of gear, and something we depend on. When it is working, we love it, but it's a royal pain when it isn't.
In a calm, flat anchorage, I might still be able to haul in a couple hundred pounds of dead weight by hand (I see Marcie smirking about this claim), but it would be a struggle. An alternative would be to use a line attached to a cockpit winch, and winch the chain onto the deck, 25 feet at a time. It would be slow and messy, but the winch would get the job done. When conditions change, however, and we need to leave in a hurry, a working windlass on Nine of Cups becomes essential. We both remember trying to leave a deep anchorage at Tristan de Cunha when the wind shifted and the anchorage became untenable. We were taking waves over the bow and when our venerable old windlass crapped out, Marcie struggled to keep us off the rocks while I hauled in all 250 feet (75m) of chain and our 110 lb. (50kg) anchor. It took hours. Not something I'd want to do on a routine basis.
I've devoted a couple of blogs to windlasses and how we replaced ours. Just as important is the windlass controller. The windlass isn't much good if the switches that operate it aren't reliable. We've tried several different methods, some of which worked well and some of which didn't.
When we bought Nine of Cups, she had a heavy-duty Maxwell windlass that was operated by two deck mounted foot switches. The system was simple and straightforward – when you stepped on one of the foot switches, the contacts of the switch connected the 12 VDC to the windlass motor. This approach, while simple, had two problems.
The first problem was the 150 amps of current that passed through the switch contacts. In the salty environment in which the switches live, conducting that much current through the switch contacts caused a lot of arcing, which in turn, caused the contacts to pit and deteriorate. I think I replaced those switches once a year for the first three years we owned Cups before I got wise to the problem.
In the next iteration, I used a windlass motor control module. In this option, only a relatively small 3-5 amps of current passes through the foot switches, and the solid state relays of the motor controller handle the 150 amps required by the windlass. The foot switches now last many years instead of just one.
The second problem was damage to the deck core from water ingress. Whoever originally installed the deck switches did nothing to protect the core except caulk under the foot switches. Eventually, water made its way into the core, causing the core to deteriorate and the bond between the core and deck to weaken. When we were in New Zealand a few years ago, I removed the top of the foredeck, replaced the wet, damaged core, epoxied it and the deck back together, then fared and repainted the whole area. The job turned out well, and is probably stronger than when new, but it was a lot of work. It would have been a lot easier to prevent the damage to begin with.
Any time I drill a hole in the deck, I do what I can to protect the core from water damage. If I am using self tapping screws, I first drill a hole in the proper location. The hole should be the proper size for the screw and slightly longer than the screw length. Then I increase the hole size by .25” (6mm), about 75% of the depth that the screw will penetrate the core. I will want to remove the screw and fitting later, so I coat both with wax or silicone grease. Then I use a Q-tip to paint the inside of the hole with epoxy. As it is kicking, I mix a batch of thickened epoxy, about the consistency of ketchup, and pour it into the hole. Then I position the fitting and screw the fastener in place. I use just enough pressure to hold the fitting in place. Once the epoxy has cured, I remove the parts, caulk underneath the fitting, and screw it back in place, tightening the screws enough to make a good seal, but not enough to squeeze all the caulk out from under the fitting.
Any hole that penetrates the bottom layer of the deck, like the hole for the foot switch for example, should be temporarily sealed from the bottom to prevent the epoxy from dripping down into the interior. If it is a small hole, I make a plug from modeling clay. If it is a large hole, I attach a piece of scrap plywood to the underside of the deck using a glue gun. I use only enough to tack the wood in place, so it's not too difficult to remove later. Then I seal any gaps between the plywood and the lower surface of the deck with modeling clay. Next, I paint the core with epoxy to wet it out, and give it a coat of thickened epoxy. In this case, the epoxy should be thicker – maybe the consistency of peanut butter, to keep it from sagging too much.
All this sounds like a lot of work, but the hour you spend now will save a few weeks work repairing a spongy deck core down the road.
Stay tuned – in the next blog I'll talk about making a handheld windlass controller, and, if you aren't too “windlass controller-ed” out by then, I'll show you my nifty digital chain counter.
Marcie's comment: “Geek sailors of the world unite!”